Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 132036, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697429

RESUMO

Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA). Here, we combined kinetic studies and computational methods on nine GCTs to characterize their inhibitory mechanism. They all behaved as reversible inhibitors, and kinetic models encompassed noncompetitive and various mechanisms of mixed-type inhibition for both enzymes. Most potent inhibitors displayed Ki values of 30 µM for MAL12 (GPESB16) and 37 µM for PPA (GPESB15). Molecular dynamics and docking simulations indicated that on MAL12, GPESB15 and GPESB16 bind in a cavity adjacent to the active site, while on the PPA, GPESB15 was predicted to bind at the entrance of the catalytic site. Notably, despite its putative location within the active site, the binding of GPESB15 does not obstruct the substrate's access to the cleavage site. Our study contributes to paving the way for developing novel therapeutic strategies for managing DM-2 through GH13 α-glycosidases inhibition.

2.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543732

RESUMO

Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.


Assuntos
Antivirais , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Antivirais/uso terapêutico , Endopeptidases , SARS-CoV-2/metabolismo , Proteases Virais
3.
RSC Adv ; 13(42): 29729-29734, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37822648

RESUMO

Antibiotic resistance continues to be an ominous threat facing human health globally and urgent action is required to limit the loss of human life. The pollution of antibiotics into the environment is one of the drivers behind the crisis. With this in mind, we have developed novel photodecomposable antimicrobial agents based on an ethanolamine scaffold, which upon photoirradiation decomposes into two major inactive fragments. Herein we describe our further work on the synthesis of novel ethanolamines with a particular focus on structure activity relationship, resulting in four new active compounds which photodecomposed into inactive fragments.

4.
J Chem Inf Model ; 63(9): 2866-2880, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058135

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 µM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Inteligência Artificial , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
5.
J Enzyme Inhib Med Chem ; 37(1): 2395-2402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065944

RESUMO

The synthesis of four heterodimers in which the copper(I)-catalysed azide-alkyne cycloaddition was employed to connect a 1-deoxynojirimycin moiety with a benzotriazole scaffold is reported. The heterodimers were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The heterodimers displayed preferential inhibition (> 9) of BuChE over AChE in the micromolar concentration range (IC50 = 7-50 µM). For the most potent inhibitor of BuChE, Cornish-Bowden plots were used, which demonstrated that it behaves as a mixed inhibitor. Modelling studies of the same inhibitor demonstrated that the benzotriazole and 1-deoxynojirimycin moiety is accommodated in the peripheral anionic site and catalytic anionic site, respectively, of AChE. The binding mode to BuChE was different as the benzotriazole moiety is accommodated in the catalytic anionic site.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , 1-Desoxinojirimicina , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Triazóis
6.
Z Naturforsch C J Biosci ; 77(11-12): 459-471, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35767726

RESUMO

Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Venenos de Crotalídeos/química , Antivenenos/farmacologia , Triazóis , Hemorragia , Relação Estrutura-Atividade
7.
Braz. J. Pharm. Sci. (Online) ; 58: e201143, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420361

RESUMO

Abstract Snake envenomation is a public health problem, and while serum therapy prevents death, the local effects of venoms can lead to amputations or morbidities. Thus, alternative treatments deserve attention. In this study, we tested eight derivatives of 1,2,3-triazole against some toxic activities of Bothrops jararaca venom. The derivatives were synthesized, and their structures analyzed by infrared and nuclear magnetic resonance. After that, the ability of compounds to inhibit hemolysis, coagulation, proteolysis, hemorrhaging, edema, and lethal activities of B. jararaca venom was investigated. The derivatives were incubated with B. jararaca venom (incubation protocol), administered before (prevention protocol) or after (treatment protocol) injecting venom into the mice. Then, hemorrhaging assay occurred. As a result, most of the derivatives inhibited the activities, even if they were incubated, injected before or after B. jararaca venom. However, the derivatives TRI 07 and TRI 18 seemed to be the most efficient in impairing hemorrhaging. The derivatives showed a low drug score of toxicity based on an in silico technique. Therefore, the derivatives fulfilled physicochemical and biological requirements to become drugs, and they may be a brand new initiative for designing antivenom molecules to complement antivenom therapy to efficiently block tissue necrosis or any other local effects.

8.
J Enzyme Inhib Med Chem ; 36(1): 1659-1664, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34294013

RESUMO

The synthesis of four tetra-tacrine clusters where the tacrine binding units are attached to a central scaffold via linkers of variable lengths is described. The multivalent inhibition potencies for the tacrine clusters were investigated for the inhibition of acetylcholinesterase. Two of the tacrine clusters displayed a small but significant multivalent inhibition potency in which the binding affinity of each of the tacrine binding units increased up to 3.2 times when they are connected to the central scaffold.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Desenvolvimento de Medicamentos , Tacrina/farmacologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Estrutura Molecular , Relação Estrutura-Atividade , Tacrina/síntese química , Tacrina/química
9.
Org Biomol Chem ; 19(10): 2322-2337, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33645607

RESUMO

We have used the Cu(i)-catalyzed azide-alkyne Huisgen cycloaddition reaction to obtain two families of bivalent heterodimers where tacrine is connected to an azasugar or iminosugar, respectively, via linkers of variable length. The heterodimers were investigated as cholinesterase inhibitors and it was found that their activity increased with the length of the linker. Two of the heterodimers were significantly stronger acetylcholinesterase inhibitors than the monomeric tacrine. Molecular modelling indicated that the longer heterodimers fitted better into the active gorge of acetylcholinesterase than the shorter counterparts and the former provided more efficient simultaneous interaction with the tryptophan residues in the catalytic anionic binding site (CAS) and the peripheral anionic binding site (PAS).


Assuntos
Inibidores da Colinesterase/química , Imino Açúcares/química , Tacrina/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Electrophorus , Ensaios Enzimáticos , Cavalos , Imino Açúcares/síntese química , Imino Açúcares/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tacrina/síntese química , Tacrina/metabolismo , Termodinâmica
10.
Mem Inst Oswaldo Cruz ; 115: e200254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33027420

RESUMO

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly contagious infection that may break the healthcare system of several countries. Here, we aimed at presenting a critical view of ongoing drug repurposing efforts for COVID-19 as well as discussing opportunities for development of new treatments based on current knowledge of the mechanism of infection and potential targets within. Finally, we also discuss patent protection issues, cost effectiveness and scalability of synthetic routes for some of the most studied repurposing candidates since these are key aspects to meet global demand for COVID-19 treatment.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Descoberta de Drogas , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Betacoronavirus , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
11.
Eur J Med Chem ; 189: 111981, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978780

RESUMO

Glioblastoma multiforme (GBM) is the most devastating and widespread primary central nervous system tumor. Pharmacological treatment of this malignance is limited by the selective permeability of the blood-brain barrier (BBB) and relies on a single drug, temozolomide (TMZ), thus making the discovery of new compounds challenging and urgent. Therefore, aiming to discover new anti-glioma drugs, we developed robust machine learning models for predicting anti-glioma activity and BBB penetration ability of new compounds. Using these models, we prioritized 41 compounds from our in-house library of compounds, for further in vitro testing against three glioma cell lines and astrocytes. Subsequently, the most potent and selective compounds were resynthesized and tested in vivo using an orthotopic glioma model. This approach revealed two lead candidates, 4m and 4n, which efficiently decreased malignant glioma development in mice, probably by inhibiting thioredoxin reductase activity, as shown by our enzymological assays. Moreover, these two compounds did not promote body weight reduction, death of animals, or altered hematological and toxicological markers, making then good candidates for lead optimization as anti-glioma drug candidates.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Glioma/tratamento farmacológico , Aprendizado de Máquina , Modelos Estatísticos , Animais , Apoptose , Proliferação de Células , Feminino , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrofuranos/química , Nitrofuranos/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Expert Opin Drug Discov ; 14(12): 1269-1282, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31416369

RESUMO

Introduction: The timely identification biologically active chemicals, in disease relevant screening assays, is a major endeavor in drug discovery. The existence of frequent hitters (FHs) in non-related assays poses a formidable challenge in terms of whether to consider these molecules as chemical gold or promiscuous non-selective reactive trash (also known as PAINS - pan assay interference compounds).Areas covered: In this review, the authors bring together expertize in synthetic chemistry, cheminformatics and biochemistry, three key areas for dealing with FHs. They discuss synthetic methods facilitating preparation of chemically diverse molecular libraries, while favoring activity in the biological space. They also survey and discuss recent computational advances in the prediction of PAINS from chemical structures. Finally, they review experimental approaches for the validation of the biological activity of screening hits and discuss alternatives for exploiting promiscuity and chemical reactivity.Expert opinion: It's essential to develop more efficient computational methods to reliably recognize PAINS in distinct molecular environments. Accordingly, advances in synthetic chemistry hold the promise to provide a better quality of chemical matter for drug discovery. Medicinal chemists should be more open to screening for hits showing biologically complex mechanisms of action rather than discarding molecules that may prove valuable as innovative disease treatments.


Assuntos
Técnicas de Química Sintética/métodos , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas , Animais , Quimioinformática , Humanos
13.
Cancer Cell Int ; 19: 207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388334

RESUMO

Cancer is one of the leading causes of death around the world and although the different clinical approaches have helped to increase survival rates, incidence is still high and so its mortality. Chemotherapy is the only approach which is systemic, reaching cancer cells in all body tissues and the search for new potent and selective drugs is still an attractive field within cancer research. Naphthoquinones, natural and synthetic, have garnered much attention in the scientific community due to their pharmacological properties, among them anticancer action, and potential therapeutic significance. Many mechanisms of action have been reported which also depend on structural differences among them. Here, we describe some of the most relevant mechanisms of action reported so far for naphthoquinones and highlight novel targets which are being described in the literature. Furthermore, we gather some of the most impressive efforts done by researchers to harness the anticancer properties of these compounds through specifically designed structural modifications.

14.
Mem. Inst. Oswaldo Cruz ; 112(4): 299-308, Apr. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-841780

RESUMO

BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.


Assuntos
Plasmodium falciparum/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/química , Antimaláricos/farmacologia , Antimaláricos/química , Naftoquinonas/química , Análise de Sequência de Proteína
15.
Mem Inst Oswaldo Cruz ; 112(4): 299-308, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28327793

RESUMO

BACKGROUND: Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES: The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS: We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS: Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS: Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/química , Naftoquinonas/química , Naftoquinonas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Análise de Sequência de Proteína
16.
J Ethnopharmacol ; 191: 216-244, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27296085

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alchornea cordifolia (Schumach. & Thonn.) Muell. Arg. (Euphorbiaceae) (A. cordifolia) is widely distributed throughout tropical Africa, where it is used extensively in traditional medicine. Conditions for which the plant has enjoyed wide use are: coughs, gonorrhoea, infertility, prostatitis, bacterial infections, diarrhoea, ulcers, pain, inflammation, fever and bronchial troubles. This review summarizes the achievements of the investigations in traditional uses, ethnobotany, phytochemistry, biological activities and toxicological profile of A. cordifolia; this review also describes the shortcomings of studies on this herbal drug and thus serves as the basis of further scientific research and development of this traditional herbal drug. MATERIALS AND METHODS: A. cordifolia-related information was collected from various resources including published articles in peer-reviewed journals, unpublished materials, textbooks, government survey reports and scientific databases such as Scifinder®, Pubmed, Science Direct, Wiley, Springer, ACS, Scielo, Web of Science and other web search instruments (Google, Yahoo), published on the subject from 1950 to 2016. 'The Plant List' (www.theplantlist.org) and 'Kew Royal Botanic Gardens' (mpns.kew.org) were used to validate the scientific name of the plant. RESULTS: The literature revealed several reports on traditional uses, biological activities, chemical constituents and toxicological evaluation of A. cordifolia. The phytochemical information indicates identification of 95 compounds including fatty acids, terpenoids, flavonoids, phenolic acids, alkaloids, which exhibited various pharmacological activities such as wound healing, anti-inflammation, anticancer, antioxidant, immunomodulation, antidiarrhoeal, antimicrobial, antidepressant, hepatoprotective, antiplasmodial and anxiolytic. However, there are still significant gaps in the completeness of our understanding of A. cordifolia bioactivity, therapeutic value, and roles played by each of the numerous phytoconstituents. CONCLUSIONS: The present review indicated that A. cordifolia is a valuable medicinal plant with multiple pharmacological effects. However, further research on the pharmacological mechanism of action of this plant is recommended in order to unravel the pharmacokinetics, pharmacodynamics, clinical relevance and toxicity of its extracts as well as constituents.


Assuntos
Etnobotânica , Euphorbiaceae/química , Medicinas Tradicionais Africanas , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Etnofarmacologia , Humanos , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/isolamento & purificação , Fitoterapia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Plantas Medicinais
17.
Expert Opin Ther Pat ; 22(9): 1033-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22860922

RESUMO

INTRODUCTION: Pyrazines derivatives are well-known and important two-nitrogen-containing six-membered ring aromatic heterocyclic compounds and can carry substituents at one or more of the four ring carbon atoms. Pyrazines are a class of compounds that occur in nature and various methods have been worked out for their synthesis. A large number of pyrazine derivatives have been found to possess diverse pharmacological properties, which has caused an increasing interest by researchers in this core. AREA COVERED: This review provides a comprehensive review of the pyrazines derivatives patented between the years 2008 to 2012 as potential active compounds. The patent databases SciFinder and esp@cenet were used to locate patent applications that were published between 2008 to present. Information from articles published was also included. EXPERT OPINION: The diversity of pyrazines derivatives found in organisms in nature with different applications began to arouse the interest of research in this nucleus. The pyrazines derivatives have numerous prominent pharmacological effects, such as antibacterial, antifungal, antimycobacterial, anti-inflammatory, analgesic, anticancer for different types, antidiabetic, treatment for arteriosclerosis, antiviral. It's the time to conduct further studies aimed at rationalizing the biological activities found in order to develop more effective and clinically interesting compounds.


Assuntos
Desenho de Fármacos , Pirazinas/farmacologia , Animais , Humanos , Patentes como Assunto , Pirazinas/síntese química , Pirazinas/química , Relação Estrutura-Atividade
18.
Chembiochem ; 13(11): 1584-93, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22753086

RESUMO

Glycoconjugated 1H-1,2,3-triazoles (GCTs) comprise a new class of glycosidase inhibitors that are under investigation as promising therapeutic agents for a variety of diseases, including type 2 diabetes mellitus. However, few kinetics studies have been performed to clarify the mode of inhibition of GCTs with their target glycosidases. Our group has previously shown that some methyl-ß-D-ribofuranosyl-1H-1,2,3-triazoles that inhibit baker's yeast maltase were also able to reduce post-prandial glucose levels in normal rats. We hypothesized that this hypoglycemiant activity was attributable to inhibition of mammalian α-glucosidases involved in sugar metabolism, such as pancreatic α-amylase. Hence, the aim of this work was to test a series of 26 GCTs on porcine pancreatic α-amylase (PPA) and to characterize their inhibition mechanisms. Six GCTs, all ribofuranosyl-derived GCTs, significantly inhibited PPA, with IC(50) values in the middle to high micromolar range. Our results also demonstrated that ribofuranosyl-derived GCTs are reversible, noncompetitive inhibitors when using 2-chloro-4-nitrophenyl-α-D-maltotrioside as a substrate. E/ES affinity ratios (α) ranged from 0.3 to 1.1, with the majority of ribofuranosyl-derived GCTs preferentially forming stable ternary ESI complexes. Competition assays with acarbose showed that ribofuranosyl-derived GCTs bind to PPA in a mutually exclusive fashion. The data presented here show that pancreatic α-amylase is one of the possible molecular targets in the pharmacological activity of ribofuranosyl-derived GCTs. Our results also provide important mechanistic insight that can be of major help to develop this new class of synthetic small molecules into more potent compounds with anti-diabetic activity through rational drug design.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , alfa-Amilases Pancreáticas/antagonistas & inibidores , Triazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/classificação , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Cinética , Modelos Moleculares , Estrutura Molecular , alfa-Amilases Pancreáticas/metabolismo , Relação Estrutura-Atividade , Suínos , Triazóis/síntese química , Triazóis/química
19.
Eur J Med Chem ; 46(7): 3071-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21450374

RESUMO

The available chemotherapy for Chagas disease, caused by Trypanosoma cruzi, is unsatisfactory; therefore, there is an intense effort to find new drugs for the treatment of this disease. In our laboratory, we have analyzed the effect on bloodstream trypomastigotes of 16 new naphthoquinone analogues of ß-lapachone modified in the pyran ring, aiming to find a new prototype with high trypanocidal activity. The new compounds presented a broad spectrum of activity, and five of them presented IC(50)/24 h in the range of 22-63 µM, whereas ß-lapachone had a higher value of 391.5 ± 16.5 µM.


Assuntos
Estágios do Ciclo de Vida/efeitos dos fármacos , Naftoquinonas/síntese química , Tripanossomicidas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/parasitologia , Doença de Chagas/parasitologia , Concentração Inibidora 50 , Estágios do Ciclo de Vida/fisiologia , Camundongos , Naftoquinonas/farmacologia , Piranos/química , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma cruzi/crescimento & desenvolvimento
20.
Org Biomol Chem ; 8(21): 4793-802, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20838670

RESUMO

Taking into account the numerous reports in the literature related to pyran naphthoquinones in searching for new pharmacologically promising molecules against different therapeutic targets, this review intends to explore the synthetic methodologies for preparing these bioactive compounds.


Assuntos
Química/métodos , Naftoquinonas/síntese química , Piranos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA